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INTRODUCTION

Modern-day theories of the strength of brittle materials stem from the
Griffith energy balance description of fracture processes (1). Griffith
regarded a cracked body as a thermodynamic system : a crack exists in a
state of equilibrium if, for a virtual incremental extension, the release of
mechanical energy in the system balances the work to create the new
surface area. In current “fracture mechanics” notation this critical state
may be expressed as G, = G, or K, = K, where the crack extension force
G, and stress intensity factor K, identify with the mechanical energy term,
and G, and K, similarly identify with the surface work term (2). From a
practical standpoint this simple “‘crack law’ has a broad appeal. By mea-
suring the applied loads needed to cause the extension of well-defined
cracks we can determine intrinsic material “‘resistance” or ‘“‘toughness”
parameters, which can then be used in design against brittle failure.
However, simple as it seems, the crack law embodied in the relations
G, = G,and K, = K, is the source of much misunderstanding and improper
application in the fracture testing community, particularly by those who

! The US Government has the right to retain a nonexclusive, royalty-free license in and to
any copyright covering this paper.

20n leave from Department of Mechanical Engineering, University of Sydney, Sydney,
New South Wales 2006, Australia.

415



416 MAI & LAWN

deal with nonmetals. It is widely taken that such relations define the
condition for failure. This is not so. The equilibrium law does indeed relate
to crack extension, but makes no statement as to whether this extension
is unstable or stable. For the idealized crack configuration originally con-
sidered by Griffith, that of an otherwise stress-free crack in a homogeneous
body loaded in uniform tension, the equilibrium state is in fact unstable,
so failure can be identified with the attainment of a critical G, or K.
However, as first pointed out by Barenblatt (3), there are many loading
configurations in which the equilibrium crack states are stable, such that
extension occurs only in response to a continual increase in the applied
driving force. Hence, in general, K, = K, (or its G-term equivalent) con-
stitutes a necessary but not sufficient condition for failure; an additional
instability requirement must also be satisfied. It is possible, for instance,
to conceive of loading configurations for which the equilibrium crack
begins its extension in a stable mode and, after a significant increase in the
applied load level, becomes unstable at a later stage of development (3, 4).
Totally erroneous conclusions can be drawn concerning fracture properties
if due attention is not given to these stability conditions.

There is growing evidence that crack-stabilization influences are mani-
fest in the strength characteristics of many material types. In practice,
one usually sets out to measure strengths in loading configurations that
essentially reflect the idealization of Griffith, namely uniform tensile stress
over the prospective crack plane, so that the time-honored critical stress
notions of spontaneous failure from an initially stress-free crack (flaw) can
be assumed to hold. It is becoming more and more apparent that several
“internal”’ sources of crack driving force can exist, over and above the
external applied loading, which can contribute to the net K field at the
crack tip. In such cases we must reconsider the fracture mechanics require-
ments for failure. Several specific examples of such internal sources are
discussed later in this review.

In this presentation we examine the ways in which the conventional
strength descriptions need to be modified to incorporate these additional
mechanical factors. There are two distinct philosophies that can be adopted
here. The first relates more closely to structural design. In this philosophy
we regard the internal K terms as modifying the surface work parameter
K., so K, remains the sole mechanical driving force on the crack system.
The appeal of this approach is that one does not require a priori knowledge
of the extra K terms. These extra terms are simply reflected in the measured
toughness characteristics, obtained directly from the applied-load/crack-
size responses of well-defined test configurations. However, the toughness
now can no longer be specified as a material constant ; rather, it becomes
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some empirical function of the crack geometry. This description closely
parallels the familiar ““R-curve” function in metals, in which plane-stress
shear-lip formation increases resistance to propagation as the crack
extends from its initial size (5).

The second philosophy asserts that the internal K terms are more
properly regarded as augmenting the applied stress intensity factor K.
The toughness term K, can now indeed be retained as a material invariant.
(However, in view of much past confusion over the meaning of this tough-
ness term, we propose its replacement by an alternative symbol, 7'.) This
approach is especially attractive to the materials scientist, who ultimately
seeks to relate the laws of crack growth to fundamental “constants’ of
solids (if possible, at the atomic level). The fundamental information comes
only at a price : one first needs to learn how to account for all the internal
contributions to the net K field. Our choice of this second route boils
down to how much more we value physical understanding over practical
expediency.

Accordingly, we begin our analysis by laying down the requirements for
fracture instability in general terms, using the Griffith energy balance as
the key starting point. These requirements are most conveniently expressed
in stress intensity factor notation, so that the internal driving force terms
may be simply incorporated by linear superposition of K fields (2). We
then present some case studies that show strong contributions to the
fracture properties from internal sources. These case studies embrace two
crack geometries, precracked beam and indentation flaw, and a wide range
of brittle material types, from simple silicate glasses to complex composites.
The evidence shows that one must be extremely careful when interrelating
strength and toughness characteristics. The implications of these results in
connection with the validity of conventional crack laws are also briefly
considered.

GENERAL DESCRIPTION OF CRACK STABILITY
CONDITIONS

Theoretical Formulation

The general conditions for crack stability may be formulated directly from
the Griffith energy balance concept (1, 4). The total energy U of a crack
system is made up of two components, the mechanical energy, Uy, (elastic
strain energy plus potential energy of loading), and the surface work, U..
A state of equilibrium is reached when the energy has a stationary value
with respect to any virtual change in the crack area C, i.e.

dU/dC = dU,/dC+dU,/dC = 0. 1.
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It is convenient to define the quantities
G =—-dU,/dC and 2a.
—R=-dUydC 2b.
so that Equation 1 reduces to the familiar form
G=G,=R, 3.

where subscript ¢ denotes an equilibrium configuration. G is Irwin’s mech-
anical energy release rate (2); it characterizes the forces that drive the
crack. R characterizes the resistance forces associated with the surface
formation processes. Of these two quantities, only R relates directly to
intrinsic properties of the material. Of course, for ideally brittle solids R
is equivalent to the surface free energy, 2y..

Equation 3 tells us when a crack is on the verge of extension, but it is
not a sufficient condition for failure. For failure, the equilibrium has to be
unstable. We indicated in our introduction that not all equilibrium crack
systems are of the unstable kind ; the crack extension may occur in a stable
fashion with each increment in applied load. To determine the nature of
the equilibrium we have to consider the second derivative of energy,
d?U/dC? The system is unstable or stable depending on whether this
second derivative is less than or greater than zero. In terms of Equations
1 and 2, we obtain

dG/dC > dR/dC (unstable) 4a.
dG/dC < dR/dC (stable).? 4b.

In the event of R independent of C the right side of Equation 4 is zero;
then (and only then) the stability is determined exclusively by whether G
is an increasing or decreasing function of C.

Equation 4 may be equivalently expressed in stress intensity factor
notation. Using connecting equations between K and G from linear elastic
fracture mechanics (2, 4, 5), we write

K=(GE)"? and 5a.
T = (RE)'?, Sb.

where E is Young’s modulus. (Strictly, these relations are for plane stress ;
E should be replaced by E/(1—v?) for plane strain, where v is Poisson’s
ratio.) 7'is interpreted as a material toughness parameter. The equilibrium

3 Actually, there is a third equilibrium state, “neutral,” determined by an equality condition
in Equation 4.
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relation (Equation 3) may now be expressed as
K=K =T. 6.

Likewise, the stability relations of Equation 4 for such equilibrium states
transform to

dK/dC > dT/dC (unstable) Ta.
dK/dC < dT/dC (stable). 7b.

Again, if 7 turns out to be independent of C the stability is determined
exclusively by the functional dependence of K(C).

The main advantage of the stress intensity factor notation here is that
the K terms for a given mode of fracture (hereinafter assumed always to
be opening Mode 1) are additive quantities, whereas the G terms are not
(2, 4, 5). Thus, if there are internal contributions, Kj, to the crack driving
force, we may superpose these linearly onto the frue applied loading
contribution, K, to get (6)

K=K+ K. 8.

K s the effective driving force felt at the crack tip. The K| terms in Equation
8 can be viewed as having a shielding or antishielding influence on the
transmission of externally applied stresses to the crack tip, depending on
whether the signs are negative or positive. It is generally possible to express
the internal terms as an integral over tractions o;(X) at the crack interface,

[<i =jcg(C5X)al(X) dX’ 9.

0

where X is an area coordinate measured from the origin in the crack plane
and g(C, X) is an appropriate Green’s function. Inserting K in Equation
8 into Equation 6 gives the modified equilibrium relation

K(C) =T, 10.

where the subscript zero on the 7 term denotes a material-invariant tough-
ness (i.e. the toughness if the K terms were entirely absent). The conditions
for instability or stability in Equation 7 translate to

dK/dC = dK,/dC+ d<z Ki>/dC 20. 11.

We can choose to associate the internal factors with the toughness term
rather than with the mechanical driving force term (see the introduction).
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Accordingly, we define the effective toughness as
T=T,— Z K, 12.

in analogy to Equation 8. The modified equilibrium relation retains the
same simple form as Equation 10,

K.(C) =T(C), 13.

except that now 7T cannot be regarded as a material invariant (although
the function T(C) might still be a material property ; see the case studies,
below). The instability/stability conditions of Equation 7 now become

dK,/dC = dT/dC. 14.

Equations 12-14 provide the basis for the R-curve (or, more appropriately,
the T-curve) description.

Experimental Procedures

From the standpoint of the experimentalist, the crack stability and tough-
ness characteristics should be determinable from the responses of well-
defined fracture configurations. One usually seeks to design fracture speci-
mens of simple geometry so that the essential fracture mechanics terms
above, most notably K,, can be specified as explicit functions of some
characteristic linear crack coordinate, ¢. This linear coordinate may be a
crack length (straight-fronted crack) or crack radius (penny crack), etc.
Clearly, the linear coordinate c is interchangeable with the areal coordinate
C in the previous stability relations, Equations 7, 11, and 14. Thus, armed
with a means of monitoring the functional dependence K,(c), we may
generate the T-curve function 7(c) in Equation 13 by following the crack
growth through its stable equilibrium states to the point of instability.

With this information, we may then quantify the internal contributions
to the net crack driving force. This may be done empirically by using
Equation 12 to evaluate the K terms. Note that this approach is contingent
on our ability to determine the intrinsic baseline toughness, 7}, from the
experimental data. Alternatively, and preferably, we might hope to evalu-
ate the K; terms from first principles, thereby allowing for a direct deter-
mination of K(c) in Equation 8 from the raw experimental data. Equation
10 then becomes the appropriate equilibrium equation for characterizing
the toughness. Of course, this latter alternative requires that we have
a priori knowledge of the mechanisms actually responsible for the K;
contributions.

There are two important points concerning the design of test configu-
rations that should be brought out here. The first relates to the “rigidity”
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of the loading system (7). This factor can be strongly reflected in the
quantity dK,/dc which appears in Equations 11 and 14. In the extremes
of “hard” (constant displacement §) and “‘soft”” (constant force P) loading
devices the differential reduces to the partial forms, (0K,/dc);and (0K,/0c)p,
which can have widely different dependences on c¢. Generally, the more
rigid the loading device the greater the stability of the crack system. The
second point relates to the specimen geometry. It is implicit in most
analyses that the crack size should be small compared to specimen dimen-
sions, but large compared to the dimensions over which internal forces
act. Violation of these conditions can seriously complicate the analytical
forms of the K,(c) and K(c) functions, thereby yielding variations in the
apparent toughness characteristics from specimen to specimen. In cases
like these special care must be exercised in interpreting the role of the K
terms, i.e. whether we associate these terms with K, (Equation 8) or T,
(Equation 12).

To illustrate the principles outlined above we devote the next two
sections to specific case studies. We focus on two kinds of fracture con-
figurations, precracked beam (double cantilever, single-edge notched bend)
and indentation flaw. The precracked beam case allows relatively simple,
direct crack length measurements. The indentation flaw system avoids
the need for any direct crack measurements by reformulating the critical
strength relations in terms of a more accessible test variable, indentation
load. Our choice of just two configuration types is not restrictive; the
effects we describe are evident in all test geometries (notwithstanding the
complicating factors referred to in the previous paragraph).

PRECRACKED BEAM SYSTEMS: CASE STUDIES

Conventional fracture toughness testing employs specimen geometries
such as the double-cantiliver beam (DCB) and single-edge notched bend
(SENB) systems (8). These specimens are particularly suited to direct
observation of crack growth during applied loading. Generally, the growth
is measured as the position Ac from the tip of a linear starter crack or
notch of length ¢, This starter crack is usually cut or sawn into the
specimen so that it retains no “memory” of the structure that contains it.
Measurements of crack growth can then be used to construct the 7T-curve.

DCB Study on Polycrystalline Alumina

In this subsection we look at some results obtained on a polycrystalline
alumina ceramic using the DCB test geometry. This will demonstrate that
the T-curve phenomenology extends to the “simplest™ of brittle materials.
Alumina is often used as a “model” ceramic material by the fracture testing
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community because it can be readily obtained in a monophase form with
well-characterized grain structures. It is often supposed to be free of
the microstructural complications that characterize other, more practical
structural materials (discussed in later sections). Nevertheless, in the results
described here, obtained by Swain (9) on the same alumina material used
in an earlier, notched beam study by Knehans & Steinbrech (10), it becomes
evident that even near-ideal microstructures can exhibit long-range effects.

In the DCB test one usually monitors the crack extension Ac from a
starter crack ¢, as a function of either the applied load, P, at the beam
mouth or the displacement, J, at that point. Then the applied stress
intensity factor can be evaluated in terms of the total crack length,
¢ =cy+Ac,

K, =a,Pc (constantload)and 15a.
K, = a,0/c* (constant displacement), 15b.

where o, and «, can be expressed in terms of specimen dimensions such as
width, thickness, groove size (and even crack size) (8). Over its range of
equilibrium growth, the crack configuration allows us to trace out the
function T'(c) in Equation 13.

Figure 1a shows Swain’s alumina data, which were obtained at constant
displacement. The effective toughness 7'(c), shown as a solid curve, almost
doubles over a crack extension of some 10 mm. The inverted dashed curves
are representations of K,(c) in Equation 15b at different values of 4. Here
the condition (0K,/dc)s < dT/dc is always satisfied, so the crack extension
is never unstable, i.e. the crack grows continuously with increasing é. In
this mode, therefore, we can trace out the entire 7-curve, from the initial
value Tj to the ultimate saturation level at large Ac.

A different response is observed in tests at constant load. To show this,
we plot Equation 15a as dashed straight lines through the origin for
different values of Pin Figure 1a. At low load the crack remains stationary.
The crack does not extend until the load line intersects the point (¢cy, Tp).
Stable growth then ensues until a condition of tangency is achieved at
M, which corresponds to the instability requirement (0K,/dc)p = dT/dc.
This is the point of failure. Note the substantial extent of stable growth,
(Ac)y & 3 mm. Beyond this point, however, the instability precludes
further T-curve measurements, i.e. the curve cannot be determined
beyond M at constant load.

We may now ask whether the 7T-curve in Figure la is representative of
a material property. The first indication that it may not be is that the
position of the curve clearly depends on the starter crack size. We note
that the instability point at M for constant load conditions is a function
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of ¢o. Hence T(c) depends on crack history. We might argue that the
effective crack origin should be taken at ¢,, in which case T(Ac) is more
likely to be the material property. However, Knehans & Steinbrech (10),
in their notched beam experiments, have demonstrated that even this
function is crack-history dependent. (Indeed, the results obtained by those
authors are quite different from Swain’s DCB data, although the source
material was the same.) We must conclude that the T-curve is not invariant
for a given material, but tends to vary with specimen geometry.

We believe that the root of this variability lies in the fact that the T-curve
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Figure 1 Crack toughness data for a polycrystalline alumina (nominally pure, grain size
16 pm), obtained on a DCB specimen: (a) direct T-curve construction, with K, = K,
included in the toughness curve; (b) replot of the same data, with K, subtracted out from
the toughness curve. (Data courtesy of M. V. Swain.)
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contains the K; contributions, which may themselves include geometrical
factors. We should associate these K; contributions with the applied term
K,, as in Equation 8, so that 7 in Equation 10 can be isolated as the true
material invariant. For the polycrystalline alumina examined here, the
cracking is found to be predominantly intergranular (9), so we must con-
sider an intrinsic grain boundary toughness term. Measuring T, as the
base of the T-curve in Figure la, we can use Equation 12 to evaluate XK
at each data point and thence generate appropriate K(c) functions from
Equation 8. Figure 15 shows the results of Figure la replotted in accor-
dance with this set of transformations. The graphical constructions for
describing the crack response are analogous to those in Figure 1a, except
of course that Equations 10 and 11 now define the equilibrium and stability
states. The major advantage of the alternative plotting procedure is
that the toughness characteristic no longer contains any elements of
crack-history or geometry dependence ; the emphasis shifts to the fracture
mechanics analyst, to determine how the complicating elements may be
incorporated directly into the K(c) function.

What is it about polycrystalline alumina that gives rise to noninvariant
toughness properties? What material parameters determine the K; terms,
and how do geometrical effects contribute to these terms? It appears that
the answers to such questions are most likely to be found at the newly
formed crack interface behind the advancing tip (11). It has been observed
that cracks are “‘bridged” by grain-localized ligaments that exert restrain-
ing forces on the system. These ligaments can remain active several milli-
meters behind the crack tip, much as in fiber-reinforced composites (see
section on fiber-reinforced cement, below). As the crack extends, the num-
ber of restraining elements increases, thereby causing the toughening. This
toughening (hence the T-curve) only reaches a plateau when the grain
ligaments begin to rupture. The appropriate internal stress intensity factor,
K,, associated with the microstructure can be calculated from Equation 9,
where o;(x) is the distribution (assumed to be continuous) of closure
stresses. Note that the integral is over the active crack length, i.e. from ¢,
to ¢, which accounts for the geometry dependence. It can be shown that
Equation 9 transforms to

u

K. (c) = —(E/Ty) f " oi(u) du, 16.
0

approximately, where E is Young’s modulus and uy = u(x = ¢y; ¢) is the

crack opening displacement at the point along the interface where bridging

is first encountered (in this case at the starter crack, ¢;) (11). The material

dependence therefore involves E, T, and the work to rupture the ligaments.
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Details of the evaluation of Equation 16 (which currently has to be carried
out numerically) are given elsewhere (12). Suffice it to say that the solid
curve in Figure 1a has been fitted in accordance with such an evaluation.

SENB Study on a Phase Transforming Zirconia

Zirconia ceramics are now being extensively studied for their great poten-
tial as structural materials (13). Their high toughnesses are contingent on
the ability of the ceramics processor to stabilize the zirconia structure (e.g.
by the use of favorable additives) so that the matrix material contains
metastable tetragonal phase particles. The intense stress field of an advanc-
ing crack triggers a martensitic transformation in these particles, to a more
dilate monoclinic phase. The net result is an effective closure force on the
crack. Since the matrix zirconia itself has relatively low toughness, we have
the ingredients of strong T-curve behavior. We use data collected by Swain
& Hannink (14) on an SENB specimen to illustrate this point.

The SENB specimen, like its DCB counterpart, is prepared with a starter
crack, ¢,. The precracked beam is then loaded in flexure, with load P or
load-point displacement ¢. The applied stress intensity factor is given by

(®)
K, = BPc'* (constantload) and 17a.
K, = B,6c'? (constant displacement), 17b.

where 8, and B, are functions of the specimen dimensions. In particular,
the B functions are strongly dependent on the ratio of crack size to specimen
width, ¢/w. Indeed, the difference in crack stability at constant load and
constant displacement is entirely accounted for by the difference in ¢/w
dependence between f, and f,. Given suitable calibrations for these factors,
we can map out the equilibrium 7-curve as in the previous example.

Such a curve has been plotted for the Swain & Hannink zirconia data
in Figure 2. The data show the same trends as in Figure 1, except that the
degree of toughening is greater and the range of crack extension to satu-
ration is shorter. As before, the upper plot (solid curve) represents the as-
measured T-curve, and the lower represents the equivalent curve with the
K; terms subtracted out. In each case we include appropriate loading
lines (dashed curves) at both constant load and displacement. Again, the
constant load configuration has an instability at M, preceded by stable
growth of about (Ac)y = 100 um, whereas the constant displacement con-
figuration is always stable.

A physical model of the transformation toughening mechanics has been
developed by McMeeking & Evans (15). They derive an expression for the
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internal, transformation-associated stress intensity factor of the form
K.(¢) = — Ee'v;0'*®(Ac/w),, 18.

where E is Young’s modulus, ¢' the unconstrained dilatational strain of a
tetragonal-monoclinic transformation, v; is the volume fraction of the
(initially) tetragonal phase, v is Poisson’s ratio, and w is the width of the
transformed zone at the wake of the fully extended crack. A tabulation of
the function ®(Ac/w) by, McMeeking & Evans (15) has been used to fit
the curve to the data in Figure 24, using the matrix toughness 7 as the
reference baseline in Equation 12.
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Figure 2 SENB crack toughness data for a zirconia ceramic (magnesia stabilized) : (@) direct
T-curve construction ; (b) replot, with K; = K, subtracted out from T(c). (Data from Reference
14)
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Some more recent experiments on zirconia materials with particularly
high toughening have revealed zone sizes that are not insignificant in
comparison with specimen dimensions (16, 17). Thus, as with alumina,
geometrical effects are felt in the T-curve. Again, it is only Ty, not T(c),
that can truly be regarded as material invariant.

SENB Study on a Fiber-Reinforced Cement Composite

Let us now look at the toughness properties of an asbestos fiber cement
(18). Here we focus more closely on specimen size effects, by studying
results from SENB beams of different thickness.* Fiber-reinforced
materials are ideal for this purpose because the interfacial bridging
restraint exerted by the fibers on the crack growth is very long range. The
starter crack is cut into the beam so there is no bridging at ¢ < ¢, in which
case the toughness T at the first incremental extension is precisely that of
the cement matrix. The full T-curve can then be generated in the way
described in the previous section, using the displacement-controlled
solution in Equation 17 (18).

The resulting data are plotted in Figure 3 for three beam thicknesses,
w. It is immediately clear that there is a strong size effect, despite the large
thicknesses used (25-150 mm). Again, we can subtract out the internal
K; terms from the T-curve in Figure 3¢ and generate a horizontal line
T, = constant in Figure 3b. Theoretically, analysis of these results becomes
relatively complex, for not only are the K, terms in Equation 17 strongly
dependent on c¢/w, but so also are the K terms. A detailed calculation
based on Equation 9 gives the stress intensity associated with fiber
reinforcement as (19)

4

Ki(c)=—y f cV2F(c/w, co/w)oi(x) dx, 19.
Co

where iy is a numerical constant, F(c/w, co/w) is a dimensionless function
obtainable from stress intensity factor handbooks (20), and o;(x) can
be measured empirically in tensile tests on specimens with completely
developed matrix cracks. Such a calculation has been used to fit the curves
(solid lines) to the data in Figure 3a and to generate the loading lines
(dashed) in Figure 3b. Note that the latter are all for a single fixed
displacement d, so the relative shifts are due entirely to the influence of
specimen size on the effective driving force felt at the crack tip.

Thus, as with the other cases we have considered so far, it is the intrinsic

4By “thickness” we mean the beam dimension measured in the direction of crack
propagation.
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Figure 3 SENB crack toughness data for an asbestos-reinforced cement, showing specimen
thickness effects, for fixed ¢,/w : (a) direct T-curve plot ; (b) same data with K; = K subtracted
out from 7(c). (Data from Reference 18.)

“matrix” toughness T, that remains the true material invariant for equi-
librium fracture. The role of the internal sources that give rise to the
apparent increase in this base toughness level as the crack extends (even
though these sources may themselves involve material properties) is most
appropriately evaluated in terms of the shielding concepts embodied in the
Greens function formalism of Equation 9.

INDENTATION FLAW SYSTEMS : CASE STUDIES

One of the most versatile techniques for determining the fracture properties
of highly brittle materials is that of indentation (21, 22). A Vickers indenter
is used to introduce a controlled flaw into the surface of a test specimen.
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Unlike the starter crack in the previous specimen types, this flaw “remem-
bers” fully the material structure in which it evolved. The specimen is then
broken in flexure. Apart from affording a means for quantifying the
toughness, via the strength/indentation-load relation, the technique pro-
vides much new insight into the stability characteristics of natural flaw
types.

Residual-Contact Stresses: A Study on Glass

A crucial feature of the indentation flaw system is the role that residual-
contact tensile driving forces play in the fracture evolution (23-25). This
influence is felt at all stages: during contact, in the initiation and devel-
opment of radial cracks (particularly as the indenter is being unloaded)
and after contact, when (most notably in the presence of water vapor)
cracks can continue to grow. Most importantly, the residual fields persist
through subsequent strength testing in a way that stabilizes the cracks. If
we are to use the indentation-strength method for evaluating toughness
properties it is imperative that we learn how to accommodate this
additional factor in the fracture mechanics.

One of the great advantages of the indentation flaw system is that the
failure origin is predetermined, so we can set up a microscope to monitor
the crack size ¢ as a function of the applied stress g,. Data from such
observations by Marshall and coworkers (24) are shown in Figure 4a.
These data are for tests on soda lime glass in an inert environment (i.e.
equilibrium conditions) at two Vickers indentation loads. There is sub-
stantial stable crack growth prior to failure at the maximum point M of
each curve (24), contrary to the notion of spontaneous instability usually
associated with the classical Griffith-like flaw.

If we now replot the data in accordance with Equation 13 we see that
the response corresponds, in effect, to T-curve behavior. To obtain such a
plot we use the standard expression for the applied stress intensity factor
in a strength test,

K, =yo,c'? (constantstress), 20.

where ¢ is a numerical constant. (We assume here that the flaw size is
always sufficiently small that beam thickness effects may be ignored.)
The resultant T-curve is shown in Figure 4b. The instability points M
correspond to the usual point of tangency. (Note again that because of
this instability we are unable to obtain data beyond M.) The data for the
two indentation loads fall on separate T-curves, although the critical value
of T(c) at instability is load independent.

To account for the results in Figure 45, in particular the dependence of
the T-curve on load, we need to incorporate an internal stress intensity
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factor associated with the tensile residual contact field. This contribution
can be determined as a limiting case of Equation 9, appropriate to a center-
loaded penny-shaped radial crack (23, 25, 26):

K.(c) =y P/, 21.

where y is a dimensionless elastic-plastic constraint factor. In Figures
44 and b the solid curves are appropriate data fits, where we have treated
T, and y as adjustable parameters in the equilibrium relation
K,=T,—K,=T. Thus it is through K, that P enters as a variable. The
instability configurations at M may now be determined explicitly by
setting (0K,/dc), = —dK,/dc (Equation 11), yielding

KM = lﬂo‘MCMz = 3T0/4, 22

which is independent of load (or, equivalently, of the initial crack size).
The locus of the instability points M in Figure 4b, notwithstanding the
history factor in the T-curves themselves, provides us with a measure of
the intrinsic material toughness, T}. Special note may be made here of the
fact that the internal term K, is positive and decreasing with respect to
crack extension, such that the T-curve tends to T at large Ac. This is in
contrast to the precracked examples discussed earlier, in which the K] terms
were all negative and increasing with crack extension, such that the baseline
level T(c) = T, was obtained at zero Ac.

It is interesting that the inverse square root relationship between critical
stress and flaw size in Equation 22 is the same as that for classical Griffith-
like flaws (i.e. for K, =0 in the equilibrium relation). Effectively, the
residual stress simply reduces the strength by 3/4 in Equation 22. Therefore,
measurement of the strength/crack-size dependence alone is not sufficient
to reveal the nature of the equilibrium conditions that precede failure. It
is therefore possible that important departures from ideal Griffith insta-
bility may pass entirely unnoticed in some crack observation procedures,
e.g. in postfailure fractographic examination of flaw origins.

Our conclusion that 7(c) is not material intrinsic, whereas T} is, suggests
that K, should be coupled as an antishielding term with the applied driving
force. This conviction is reinforced when we look more closely at the
parameters involved in K. Unlike our previous K; terms (in the section on
precracked beam systems), there are no elements of material dependence
in Equation 21 [notwithstanding a minor dependence of y on modulus
and hardness (25)] that might be associated with an intrinsic toughness
characteristic. Thus, in the spirit of Equation 10, we can transform the
graphical representation in Figure 4b to that of Figure 4¢ by making use
of our “calibrated” values of T, and 7, as in Figures 1-3. The elements of
crack history (as reflected here in the value of P) are now bound up
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exclusively in the loading lines, K(c), isolating T, as the true toughness
parameter.

There is something very useful that we can draw from our analysis of
the indentation problem at this stage. Clearly, we must observe the crack
growth directly during stressing to confirm the crack-size dependence of
the K, term in Equation 21. However, once this dependence has been
established there is little to be gained by repeating the observations in
subsequent failure test runs. In principle, it should suffice to monitor the
system at the critical points M only, for, as seen in Equation 22, these
points uniquely determine the material toughness parameter. Indeed, one
can eliminate the necessity for any further measurements of crack size
because the instability condition, dK/dc = (0K,/dc), +dK,/dc = 0, can be
used in conjunction with the equilibrium relation, K = K,+ K, = T, to
obtain

omPV? = 3TY3/4%3 x> = constant, 23.

thus eliminating ¢ as a variable. (Equation 23 is equivalent to Equation
22, but P replaces ¢y as a measure of flaw severity.) This is a distinct
advantage in studying ceramics in which crack observations are not always
practical, owing to poor optical reflectivity, ill-developed radial crack
patterns, or the small scale of the indentation flaw system.

Accordingly, Figure 5 shows the results of some tests on the same
indented soda lime glass system represented in Figure 4, obtained by
measuring the critical applied stresses, oy, as a function of load P (24). In
Figure 5a the raw data are fitted with a slope of —1/3 (logarithmic
coordinates), in line with Equation 23 (again using calibrated parameters
T, and y from the previous regressions in Figure 4 to fix the intercept).
The same data are replotted in Figure 5b as o\ P versus P to emphasize
the constancy of the toughness term 7, in Equation 23. We make further
use of this alternative construction in our remaining case study.

Microstructure-Strength Relations in Polycrystalline
Alumina

In this final example we return to polycrystalline alumina to examine the
way the microstructural effects described in the section on DCB can
become manifest in strength properties. Interest in this topic stems from
the issue of whether crack laws determined from observations on large-
scale fracture specimens can be applied to microstructural flaws. There is
mounting evidence that extrapolations from the macroscale to the micro-
scale can be extremely misleading ; the strengths of materials that fail from
microstructural flaws can be much less favorable than those predicted
from macroscopic toughness parameters (27).
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To illustrate the potential magnitude of the size effect, we show in Figure
6 some results from a recent indentation-strength study of aluminas (28)
(and other ceramics). The data are plotted as oy versus P in Figure 6a
and as oy P versus P in Figure 6b, in direct analogy to Figure 5. We
are primarily interested in the polycrystalline alumina ; the single crystal
(sapphire) data line (28) is included solely as a reference baseline. It is
immediately apparent that the polycrystal data deviate significantly from
the ideal (microstructure-free) indentation-strength response defined by
Equation 23. In particular, the g\ (P)"? plot shows a strong increase with
indentation load, thereby reflecting strong 7-curve behavior.

Clearly, a complete oy P description of the polycrystal data in Figures
6a and b requires that we incorporate the microstructural stress intensity
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Figure 5 Inert strength data for Vickers indented glass (same material as in Figure 4):
(a) direct plot as function of load; (b) replotted to confirm validity of Equation 23. (Data
from Reference 23.)
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factor, K, in Equation 16, into the indentation analysis. This is certainly
needed if we ever wish to extract the T-curve itself from the strength data.
Thus we may appropriately modify the form of the equilibrium condition
in Equation 10 to yield

K =yo,c'*+yP/?+K,(c) =T, 24.

and impose the instability requirement dK/dc =0 from Equation 11 to
determine the failure states. Preliminary numerical solutions have been
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Figure 6 Inert strength data for Vickers indented polycrystalline alumina (nominally pure,
grain size 25 pm). Data for single crystal (sapphire) are included for comparison. (a) Direct
plot as function of load ; (b) data replotted to demonstrate breakdown of constant-toughness
assumption in Equation 23. Note how the strengths of the polycrystal, although superior at
high indentation loads, fall below those of the reference single crystal at low loads. In the
latter region the grain boundary structure is the sole determinant of the toughness, which
accounts for the cut-offs in the fitted curves. (Data from Reference 28.)
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obtained elsewhere for the data in Figure 6 and were used to plot the solid
curves in this figure (12). In deriving those solutions it has to be recognized
that the indentation crack does not experience the microstructural restrain-
ing forces until the first ligamentary bridges are intersected, at ¢ = d say;
this accounts for the “cutoffs” in the polycrystal data at low loads in
Figure 6.

The solutions to Equation 24 give us, in addition to a curve fit to the
strength data in Figure 6, values for the material parameters in the K,(c)
function needed to generate the complete T-curve, T = T,— K,. We plot
the resultant curve for the polycrystalline alumina in Figure 7, together
with the corresponding sapphire reference baseline. The T-curve shows
the same general trends as those seen in Figure 1a. Any differences between
the respective curves can be attributed to specimen geometry effects and
to the strength of the microstructural interaction in the two polycrystalline
materials. Indeed, it is found that the shape of the entire T-curve is highly
sensitive to the grain boundary structure (12, 28), especially in the lower
and upper bounding levels relative to the toughness of sapphire and the
range of crack extension over which the curve rises.

Finally, we illustrate how complex crack stability conditions can
become, especially when more than one internal K-field operates (K, and
K,). It has already been noted that the stabilizing influence of the micro-
structure does not “switch on” until ¢ = d, whereas the corresponding
stabilization due to the residual contact force operates from the inception
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Figure 7 T-curve for polycrystalline alumina, extracted from the data fits in Figure 6.
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Figure 8 Applied stress versus crack size for Vickers indented alumina. Plot is for inden-
tation flaw in a size range comparable to that of microstructural detail, using parametric

evaluations from Figure 6. Note the multiple stable and unstable branches of the equilibrium
curve en route to failure.

of the flaw. Hence, for low indentation loads, such that the flaw begins its
life in the base region of the T-curve, we may expect some interesting crack
responses as the external stress is applied. Accordingly, with the same
parameter evaluations used to generate the T-curve, we compute from
Equation 24 the complete o,(c) function for a selected value of P toward
the extreme left of the data range in Figure 6. This function is plotted in
Figure 8. The predicted sequence of events is: (1) initial stable growth, (2)
unstable “pop in,” (3) further stable growth, (4) unlimited instability
(failure). This behavior is borne out by direct, in situ observations of
indentation flaws in strength tests (12).

SUMMARY

We have emphasized the importance of incorporating an instability
requirement into the failure criteria for equilibrium brittle cracks. Our
motivation has been the need to establish a proper descriptive basis for
the T-curve (R-curve) phenomenology, where internal driving forces can
have such a dominant influence on strength properties. The requirement
for a rising T-curve is that the appropriate Ki(c) functions diminish
algebraically with crack extension, i.e. either negative and increasing or
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positive and decreasing. These functions are manifest as a stabilizing
influence in the fracture evolution. Thus, we have seen in the indentation
system that, contrary to conventional wisdom, flaws can undergo sig-
nificant (sometimes multiple) stages of precursor stable growth before
reaching a failure configuration. There is growing evidence that this kind
of response is not restricted to artificial flaws, but is widespread in naturally
occurring flaw systems as well (29).

These concerns raise strong doubts as to the validity of present-day
strength analytical procedures, especially in ceramics. In particular, the
time-honored notion that flaws should fail spontaneously without change
in their initial configuration (the classical Griffith flaw) is at issue. Our case
studies indicate that the instability configurations at failure may have little
or nothing to do with the initial configurations; the precursor stable
growth renders the initial flaw size irrelevant. This is illustrated most
dramatically by the data for the polycrystalline alumina in Figure 6a;
there is a pronounced plateau region where the strength is almost totally
independent of indentation load. This has grave implications for non-
destructive evaluation, for a screening test that eliminates large flaws can
no longer be taken as a guarantee of a high strength.

It is, therefore, important that the 7T-curve be taken into account in the
design of brittle materials. From the engineering standpoint, an under-
standing of underlying physical processes is not essential since, as we have
seen, the entire T-curve can be obtained empirically. However, such an
understanding is valuable in determining the extent to which the curve is
material intrinsic. Specimen or component geometry, mode of loading
(constant load or displacement), and crack history (‘“‘memory’” of material
structure) can be crucial design variables. Without a suitable physical basis
for accommodating these factors in the fracture mechanics formalism,
explicitly via the K,(c) and K(c) functions, any extrapolation from
laboratory test results to prospective service configurations is questionable.

Perhaps the most fascinating of the issues raised in this study is the
relevance of the T-curve to fundamental crack laws. We prefer the single-
valued parameter 7T, over the function T(c) as a representative material
toughness descriptor, as stated throughout our presentation. T; con-
veniently quantifies the strength of the field singularity at the tip of
the equilibrium crack, the region where the actual processes of material
separation operate. As such, it is ultimately relatable to intrinsic surface
energy terms, either for the bulk matrix or the grain boundary. The
function T(c), however, embodies the K; terms, which depend on events
that occur away from the crack tip (although in most of our case studies
these K; terms reflect some properties of the material). It is more meaningful
to regard the K; processes as mechanically shielding (or antishielding) the
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tip from the remote applied loading (6), as implied in Equation 8. Thus it
is K and not K, that defines the true crack driving force; and it is K = T}
(Equation 10), not K, = T (Equation 13), that comes closest to an intrinsic
equilibrium material constant.

This last point can be carried over to nonequilibrium fracture, which
we have not considered until now. In certain chemical environments brittle
cracks grow at some rate, even in static loading tests. This rate generally
increases as the applied load K, is increased, which has led experimenters
to express their data as a crack velocity function, v(K,). However, as we
have just seen, it is the net stress intensity factor K that governs the
strength of the crack-tip field, in which case it is v(K) that we derive from
fundamental bond rupture kinetics (30). Hence, for cracks stabilized by
closure forces (K; < 0) we expect slower velocities, which will be reflected
as a depression of the measured v(K,) curve (31). The potential for crack
velocity shifts to manifest themselves in such interesting phenomena as
“fatigue limits™ (zero crack driving force, K = K,+ XK; = 0) remains to be
explored by the brittle fracture community.
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